Numerical solution to low rank perturbed Lyapunov equations by the sign function method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Rank Solution of Lyapunov Equations

This paper presents the Cholesky factor–alternating direction implicit (CF–ADI) algorithm, which generates a low rank approximation to the solution X of the Lyapunov equation AX + XAT = −BBT . The coefficient matrix A is assumed to be large, and the rank of the righthand side −BBT is assumed to be much smaller than the size of A. The CF–ADI algorithm requires only matrix-vector products and mat...

متن کامل

Efficient low-rank solution of generalized Lyapunov equations

An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the ite...

متن کامل

A modified matrix sign function method for projected Lyapunov equations

In this paper we discuss the numerical solution of projected generalized Lyapunov equations using the matrix sign function method. Such equations arise in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. It is known that the matrix sign function method applied to a matrix pencil λE−A converges if and only if λE−A is of index ...

متن کامل

Numerical solution of generalized Lyapunov equations

Two eecient methods for solving generalized Lyapunov equations and their implementations in FORTRAN 77 are presented. The rst one is a generalization of the Bartels{Stewart method and the second is an extension of Ham-marling's method to generalized Lyapunov equations. Our LAPACK based subroutines are implemented in a quite exible way. They can handle the transposed equations and provide scalin...

متن کامل

Numerical Solution of The First-Order Evolution Equations by Radial Basis Function

‎In this work‎, ‎we consider the nonlinear first-order evolution‎ ‎equations‎: ‎$u_t=f(x,t,u,u_x,u_{xx})$ for $0 ‎to initial condition $u(x,0)=g(x)$‎, ‎where $u$ is a function of‎ ‎$x$ and $t$ and $f$ is a known analytic function‎. ‎The purpose of‎ ‎this paper is to introduce the method of RBF to existing method‎ ‎in solving nonlinear first-ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2016

ISSN: 1617-7061

DOI: 10.1002/pamm.201610350